Lung Cancer Research Tools


Recent advances in lung cancer research suggest a personalized approach to diagnostics and therapeutics to reduce mortality

Due to its high rate of mortality, lung cancer is a prominent area of research for scientists. Lung cancer is a complex disease with many subtypes resulting from factors such as family history, lifestyle and occupation-with each subtype requiring different treatment regimens. Thus, developing therapeutics for this disease requires vast research efforts.

The specific subtypes of the cancer must be paired to successful treatments, which can then be matched to individual patients. The American Type Culture Collection (ATCC) has responded to this initiative for personalized medicine by creating new drug screening and diagnostic test development tools, such as tumor cell panels based on genetic alteration, primary cells, gene-edited isogenic cell lines and cell line derivatives.

“Over the years, we have expanded our portfolio into the most diverse and unique collection of cancer cells to include thousands of human and animal cancer cell lines representing the diversity of the disease,” said Fang Tian, PhD, lead scientist at ATCC. “Our growing collection of lung cancer cell lines is now just shy of 100 lines. The cells in our collection were deposited by investigators who identified the important growth properties, bio-functions and molecular characteristics of these cells. ATCC is also adding to this information through internal R&D and application data. Further, ATCC cultures have appeared in thousands of peer-reviewed publications which form the basis for the discovery and development of scientific advances in the field of lung cancer research.”

In a recent development, scientists are being asked by grant reviewers and journal editors to provide controls for their experiments that represent normal in vivo physiology. ATCC has answered the call for relevant physiological controls for its lung cancer cells lines by delivering human primary airway cells. These cells display normal expression of tumor suppressor genes and proto-oncogenes, indicating they would be ideal controls in any lung cancer experiment.

ATCC has established 3-D culture methods for its primary cells. These methods can be used to further replicate the in vivo situation of the airways of the lung, including pseudostratified epithelium, mucus secretion and cilia movement. Additionally, ATCC can provide donor specific characteristics or fill requests for specific gender, age, ethnicity and cause of death for its primary cells, enabling scientists to satisfy the current funding and publication requirements for rigor and transparency.

Making the Most of the Data

The value of tumor cell lines as research models and drug discovery tools is greatly enhanced when there is an understanding of the underlying genetic abnormalities that drive their phenotype.

“ATCC has taken the first step for researchers by annotating many of our tumor cell lines with gene mutation data mined from the available online databases. We have then validated these genetic alterations in-house via next-generation sequencing,” continued Tian. “Using this data, we compiled panels of the most useful cell lines for cancer research.”

These tumor cell panels contain ten or more cell lines organized by the presence of various gene alterations relevant in lung cancer, such as the EGFR and KRAS panels. The mutational or amplification status of the cells in these panels have been thoroughly sequenced and validated by ATCC scientists.

Precise Gene Editing

In addition to compiling its cell lines into highly validated panels, ATCC has begun to take advantage of emerging precise genome editing technologies to create more reliable screening tools for cancer investigators. ATCC plans to use gene editing technology to develop a portfolio of new products and services to support basic and translational research.

A recent trend in lung cancer diagnostics is the creation of nucleic acid-based tests used in clinical testing. A critical element in developing these tests is highly pure, well-characterized nucleic acids such as genomic DNA, which are used as controls.

“ATCC has recently leveraged its vast collection of cells to create quantitative molecular controls using genomic DNA isolated from cell lines within our Genetic Alteration Panels. These DNA preparations harbor the most common biomarkers seen in cancer, such as mutations or amplifications in PI3KCA, EGFR and KRAS,” stated Tian. “These DNA have been quantified with gene copy number and mutation allelic frequency, so they are ideal as standards for the development of microarray, qPCR, Biochip and other molecular-based technologies, which are used to detect and quantify driver mutations in patient samples and can be used to validate lab-developed tests for lung and other cancers.”

The Future of Cancer Research

Recent advances in lung cancer research suggest that a personalized approach to diagnostics and therapeutics may significantly reduce the high mortality of the disease. ATCC has moved in to support this novel approach by offering new drug screening and diagnostic test development tools such as tumor cell panels based on genetic alteration, gene-edited isogenic cell lines and cell line derivatives.


836 words

About Author

Brian A. Shapiro, PhD

Technical writer with ATCC

Comments are closed.